Synthesis and Structure of $\{\eta^5-C_5H_5Cr\}_2\{\mu-\eta^6:\eta^6-(\mu-1,2-C_3H_6-1,2-C_2B_4H_4)\}$. An Unusual 24-Electron Triple-Decker Sandwich Complex Containing a Metal-Stabilized, Planar Tetraborabenzene

Kazumori Kawamura, Maoyu Shang, Olaf Wiest, and Thomas P. Fehlner*

Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556

Received October 10, 1997

Recently we demonstrated that $Cp*MCl_n$ complexes,¹ $Cp* = \eta^5$ -C₅Me₅, are useful metal synthons for metallaboranes containing Co,^{2,3} Cr,^{4,5} Mo,⁶ and Ta⁷ metals. One of these, $Cp*_2Cr_2B_4H_8$, **1**,

is selective in its reactions partners.^{8,9} We wondered whether this is due to restricted access to the metal sites caused by the bulkiness of the Cp* ligand. Thus, we have explored the synthesis of the η^5 -C₅H₅ (Cp) analogue of **1**. In doing so, we have isolated a byproduct which is a novel member of the family of known triple-decker complexes.¹⁰

In attempts to produce the Cp analogue of **1**, a new compound was isolated in low yield.¹¹ Mass spectrometric data yield the composition $C_{15}H_{20}B_4Cr_2$, which suggests the unexpected formulation $Cp_3Cr_2B_4H_5$.¹² Although the ¹¹B NMR shows two pairs of equivalent boron atoms reminiscent of **1**, the ¹H NMR suggests the presence of a $-CH_2-CH_2-CH_2-$ fragment with two equivalent CH_2 groups. In addition, there is no sign of B-H-Cr

- (1) Poli, R. Chem. Rev. 1991, 91, 509.
- (2) Nishihara, Y.; Deck, K. J.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1993, 115, 12224.
- (3) Nishihara, Y.; Deck, K. J.; Shang, M.; Fehlner, T. P.; Haggerty, B. S.; Rheingold, A. L. Organometallics 1994, 13, 4510.
- (4) Deck, K. J.; Nishihara, Y.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1994, 116, 8408.
- (5) Ho, J.; Deck, K. J.; Nishihara, Y.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1995, 117, 10292.
- (6) Aldridge, S.; Fehlner, T. P.; Shang, M. J. Am. Chem. Soc. 1997, 119, 2339.
- (7) Aldridge, S.; Hashimoto, H.; Shang, M.; Fehlner, T. P. Chem. Commun. 1998, 207.
- (8) Hashimoto, H.; Shang, M.; Fehlner, T. P. Organometallics 1996, 15, 1963.
- (9) Hashimoto, H.; Shang, M.; Fehlner, T. P. J. Am. Chem. Soc. 1996, 118, 8164.
- (10) See: Herberich, G. E. In *Comprehensive Organometallic Chemistry II*; Abel, E., Stone, F. G. A., Wilkinson, G., Eds.; Pergamon Press: Oxford, U.K., 1995; Vol. 1; see also references therein.
- (11) The preparative reaction of 1 was carried out as described previously for Cp* but using NaCp.⁵ As only paramagnetic products were observed, THF was removed, toluene added, and the mixture heated at 80 °C for 15 h. A small amount of a brown crystalline material was isolated from the reaction mixture by fractional crystallization.
- (12) Spectroscopic data: $M\dot{S}(EI)$: $P^+ m/e = 348$, ${}^{12}C_{15}{}^{11}H_{20}{}^{11}B_{4}{}^{52}Cr_{2}$; distribution of isotopes consistent with 4B and 2Cr; calculated exact mass 348.0765 (average of ${}^{11}B^{52}Cr$ and ${}^{10}B^{53}Cr$ isotopomers), observed 348.0785. ${}^{11}B$ NMR (δ ; THF, 20 °C): 111.1 d, $J_{BH} = 137$ Hz, { $}^{11}H$ s; 69.0 d, $J_{BH} = 145$ Hz, { $}^{11}H$ s. ${}^{11}H$ NMR (δ ; C₆D₆, 20 °C): 5.17 s, 10H, C₅H₅; 2.76 t, $J_{HH} = 6.7$ Hz, 4H, $CH_2CH_2CH_2$; 1.98 quint, $J_{HH} = 6.7$ Hz, 2H, CH_2CH_2 CH₂.

Figure 1. Molecular structure of $\{\eta^5 - C_5H_5Cr\}_2\{\mu - \eta^6: \eta^6 - (\mu - 1, 2 - C_3H_6 - 1, 2 - C_2B_4H_4)\}$, **2.** Selected distances (Å): Cr(1)-Cr(2), 2.6626(11); Cr(1)-C(1,2), 2.075(4), 2.062(5); Cr(1)-B(1,2,3,4), 2.137(5), 2.108(5), 2.087(5), 2.115(6); Cr(2)-C(1,2), 2.085(4), 2.067(5); Cr(2)-B(1,2,3,4), 2.131(5), 2.089(5), 2.100(6), 2.120(5); C(1)-C(2), 1.464(6); C(1)-B(1), 1.561(6); C(2)-B(4), 1.553(7); B(1)-B(2), 1.713(7); B(2)-B(3), 1.734-(8); B(3)-B(4), 1.706(8) Å.

bridging hydrogens. Although related to **1**, the compound was only defined by a structure determination.¹³

The structure of **2** (Figure 1) contains a Cp₂Cr₂B₄H₄ fragment qualitatively similar to that in **1** with the four B–H–Cr hydrogen atoms of **1** replaced by two carbyne carbons of the C₅ ring derived from the third Cp. Precedent for the incorporation of a Cp fragment comes from the formation of { η^5 -C₅H₅Co}₂{ μ - η^5 : η^5 -(μ -1,2-C₃H₄-1,2-C₂B₃H₃)}, **3**, in the reaction of [B₅H₈]⁻ with NaCp and CoCl₂.¹⁴ This molecule contains a planar C₂B₃ ring sandwiched between two CpCo fragments and has an unsaturated –CH=CHCH₂– fragment bridging the carbon atoms of the C₂B₃ ring.¹⁵ The Co–Co distance in **3** is considerably longer than the Cr–Cr distance in **2** (3.135(1) vs 2.663(1) Å).

The hexagonal bipyramidal geometry of 2 is unknown in metallacarborane chemistry and is not one of the polyhedra

- (13) Crystal data for { η^5 -C₅H₅Cr}₂{ μ - η^6 : η^6 -(μ -1,2-C₃H₆-1,2-C₂B₄H₄)}, **2**: C₁₅H₂₀B₂Cr₂, monoclinic P2₁/c (No. 14), a = 11.820(3) Å, b = 9.836-(2) Å, c = 14.471(4) Å, $\beta = 109.46(2)^\circ$, V = 1586.4(7) Å³, Z = 4, $D_{calc} = 1.455$ g cm⁻³, 293 K. Data were collected on a crystal of dimensions 0.30 × 0.08 × 0.08 mm in the $\omega/2\theta$ scan mode on a CAD4 diffractometer to a maximum 2θ of 50.0°. Structure solution and refinement were by SHELXTL. All non-hydrogens were refined anisotropically, and the hydrogen atoms were refined isotropically with selected restraints. Using all reflections (including negative intensities), the refinement converged to $R_1 = 0.0779$, w $R_2 = 0.1220$ ($R_1 = 0.0464$, w $R_2 = 0.0984$ if calculated only for reflections with $I > 2\sigma(I)$).
- (14) Miller, V. R.; Weiss, R.; Grimes, R. N. J. Am. Chem. Soc. 1977, 99, 5646.
- (15) Pipal, J. R.; Grimes, R. N. Inorg. Chem. 1978, 17, 10.

normally associated with eight-vertex closed clusters.¹⁶ Further, the available cluster bonding electrons are insufficient to meet the requirements of a single eight-vertex closo cage. Thus, **2** is better described as a 24-valence-electron (ve) triple-decker complex, { η^5 -C₅H₅Cr}₂{ μ - η^6 : η^6 -(μ -1,2-C₃H₆-1,2-C₂B₄H₄)}. This electron count lies considerably below the 30/34-ve rule proposed by Hoffmann et al.¹⁷ and matches that observed for { η^5 -C₅H₅-Ti}₂{ μ - η^3 : η^3 -P₆} with a puckered central ring.^{18,19}

The observed structure is consistent with the description of **2** as a triple-decker complex. The atoms of the C_2B_4 ring plus C(3) and C(5) lie in a well-defined plane (rms deviation 0.010 Å). The two Cr atoms are nearly equidistant from the six atoms of the C_2B_4 ring. The C–C, B–C, and B–B distances within the central ring are comparable to the same parameters in **3**, and the C–C distance is close to the average found in the central C_6 ring of $\{\eta^5-C_5H_5V\}_2\{\mu-\eta^6:\eta^6-C_6H_6\}$ of 1.443(5) Å.²⁰ The C₅ rings are modestly tilted relative to the C_2B_4 ring.

A comparison with triple-decker complexes that contain a central P₆ moiety is instructive. In the 28-ve $\{\eta^5-C_5Me_5Mo\}_2$ - $\{\mu - \eta^6: \eta^6 - P_6\}$, a planar and symmetric 6π P₆ species is found "trapped" by two CpMo fragments.²¹ However, for CpMP₆MCp complexes with 26- and 24-ve, variations in the geometries of the central P₆ have been correlated with the orbital interactions of the metals with the ring.^{19,22} That is, in contrast to the 28-ve complex, both known 26-ve complexes (M = V, Nb) have inplane distortions of the central ring and the 24-ve complex (M =Ti) has a puckered ring. This behavior has been traced to two MO's: a metal-ring antibonding orbital (e₂' symmetry, 4d* in Figure 3, ref 22) and a metal-metal bonding orbital (a_1) and the SHOMO in Figure 3, ref 22). The former is fully occupied, and the HOMO for 28-ve is but half-occupied for 26-ve leading to in-plane distortions that remove the degeneracy. It is empty for 24-ve and although a planar ring is not ruled out, puckering of the ring permits an increase in the HOMO-LUMO gap.

Fenske-Hall calculations^{23,24} for **2** generate a similar MO diagram in which the HOMO is a Cr-Cr bonding orbital and the LUMO is a nearly degenerate pair of orbitals corresponding to the ring-metal antibonding orbitals described above. The

- (17) Hoffmann, R.; Lauher, J. W.; Elian, M.; Somerville, R. H. J. Am. Chem. Soc. 1976, 98, 3219.
- (18) Scherer, O. J.; Swarowsky, H.; Wolmershäuser, G.; Kaim, W.; Kohlmann, S. Angew. Chem., Int. Ed. Engl. 1987, 26, 1153.
- (19) Reddy, A. C.; Jemmis, E. D.; Šcherer, O. J.; Winter, R.; Heckmann, G.; Wolmershäuser, G. Organometallics 1992, 11, 3894.
- (20) Duff, A. W.; Jonas, K.; Goddard, R.; Kraus, H.-J.; Krüger, C. J. Am. Chem. Soc. 1983, 105, 5479.
- (21) Scherer, O. J.; Sitzmann, H.; Wolmershäuser, G. Angew. Chem., Int. Ed. Engl. 1985, 24, 351.
- (22) Jemmis, E. D.; Reddy, A. C. Organometallics 1988, 7, 1561.
- (23) Fenske, R. F. Pure Appl. Chem. 1988, 27, 61.
- (24) Hall, M. B.; Fenske, R. F. Inorg. Chem. 1972, 11, 768.

difference in **2** compared to CpTiP₆TiCp arises from the lower energies of the Cr d functions relative to Ti and the higher energies of the C₂B₄ ring orbitals relative to P₆. This yields a substantial HOMO-LUMO gap without the necessity of ring distortion. In addition, as the empty metal-ring antibonding MO's (4d* in Figure 3, ref 22) are largely metal based and derived from two occupied metal fragment orbitals, electrons are transferred away from the two Cr centers in forming **2**. Simultaneously, a pair of C₂B₄-based, occupied MO's of **2** are derived mainly from the empty, nearly degenerate set of out-of-plane π -bonding orbitals of the C₂B₄ ring and electrons are transferred to the ring on forming **2**. These two orbital interactions suggest that **2** can be viewed as a 6π [C₂B₄H₄R₂]⁴⁻ ring bridging a [CpCr^{III}-Cr^{III}Cp]⁴⁺ ion.

For this reason we have explored a planar structure of $[C_2B_4H_6]^{2n-}$, n = 0-2, with ab initio techniques.²⁵ Neither $C_2B_4H_6$ nor $[C_2B_4H_6]^{2-}$ was found to have a stable planar form (three out-of-plane and two in-plane imaginary frequencies, respectively), but planar $[C_2B_4H_6]^{4-}$ is a true minimum on the potential energy surface.²⁶ The calculated bond distances (C-C = 1.464, C-B = 1.548, and B-B = 1.716 and 1.706 Å) are equal within experimental error to those of **2**. As the distortions observed for P₆ triple-deckers are clearly related to changes in ring orbital populations on coordination, the excellent correspondence between the parameters in the free ligand structure and related parameters in **2** gives added validity to the model suggested.

Acknowledgment. The support of the National Science Foundation is gratefully acknowledged.

Supporting Information Available: Text describing the structure determination and tables providing further crystallographic details, atomic coordinates and equivalent isotropic displacement parameters, bond lengths and angles, anisotropic displacement parameters, hydrogen atom coordinates and least-squares planes, as well as energies, imaginary frequencies, and coordinates of $[C_2B_4H_6]^{2n-}$, n = 0-2 (31 pages). An X-ray crystallographic file, in CIF format, is available on the Internet only. Ordering and access information is given on any current masthead page.

IC9712784

(26) All calculations were performed using the G94 series of programs and the Becke3LYP hybrid functional with a 6-31G* basis set: Frisch, M. J.; Trucks, G. W.; Schlegel, H. B.; Gill, P. M. W.; Johnson, B. G.; Robb, M. A.; Cheeseman, J. R.; Keith, T. A.; Peterson, G. A.; Montgomery, J. A.; Raghavachari, K.; Al-Laham, M. A.; Zakrzewski, V. G.; Ortiz, J. V.; Foresman, J. B.; Cioslowski, J.; Stefanov, B. B.; Nanayakkara, A.; Challacombe, M.; Peng, C. Y.; Ayala, P. Y.; Chen, W.; Wong, M. W.; Andres, J. L.; E. S. Replogle, Gomperts, R.; Martin, R. L.; Fox, D. J.; Binkley, J. S.; Defrees, D. J.; Baker, J.; Stewart, J. P.; Head-Gordon, M.; Gonzalez, C.; Pople, J. A. *Gaussian 94*, Revision B.1; Gaussian, Inc.: Pittsburgh, PA, 1995.

⁽¹⁶⁾ Mingos, D. M. P.; Wales, D. J. Introduction to Cluster Chemistry; Prentice Hall: New York, 1990.

⁽²⁵⁾ McKee, M. L. J. Am. Chem. Soc. 1988, 110, 5317.