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Recently we demonstrated that Cp*MCln complexes,1 Cp* )
η5-C5Me5, are useful metal synthons for metallaboranes containing
Co,2,3 Cr,4,5Mo,6 and Ta7 metals. One of these, Cp*2Cr2B4H8, 1,

is selective in its reactions partners.8,9 We wondered whether
this is due to restricted access to the metal sites caused by the
bulkiness of the Cp* ligand. Thus, we have explored the synthesis
of theη5-C5H5 (Cp) analogue of1. In doing so, we have isolated
a byproduct which is a novel member of the family of known
triple-decker complexes.10

In attempts to produce the Cp analogue of1, a new compound
was isolated in low yield.11 Mass spectrometric data yield the
composition C15H20B4Cr2, which suggests the unexpected for-
mulation Cp3Cr2B4H5.12 Although the11B NMR shows two pairs
of equivalent boron atoms reminiscent of1, the1H NMR suggests
the presence of a-CH2-CH2-CH2- fragment with two equiva-
lent CH2 groups. In addition, there is no sign of B-H-Cr bridging hydrogens. Although related to1, the compound was

only defined by a structure determination.13

The structure of2 (Figure 1) contains a Cp2Cr2B4H4 fragment
qualitatively similar to that in1with the four B-H-Cr hydrogen
atoms of1 replaced by two carbyne carbons of the C5 ring derived
from the third Cp. Precedent for the incorporation of a Cp
fragment comes from the formation of{η5-C5H5Co}2{µ-η5:η5-
(µ-1,2-C3H4-1,2-C2B3H3)}, 3, in the reaction of [B5H8]- with
NaCp and CoCl2.14 This molecule contains a planar C2B3 ring
sandwiched between two CpCo fragments and has an unsaturated
-CHdCHCH2- fragment bridging the carbon atoms of the C2B3

ring.15 The Co-Co distance in3 is considerably longer than the
Cr-Cr distance in2 (3.135(1) vs 2.663(1) Å).
The hexagonal bipyramidal geometry of2 is unknown in

metallacarborane chemistry and is not one of the polyhedra
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(11) The preparative reaction of1 was carried out as described previously
for Cp* but using NaCp.5 As only paramagnetic products were observed,
THF was removed, toluene added, and the mixture heated at 80°C for
15 h. A small amount of a brown crystalline material was isolated from
the reaction mixture by fractional crystallization.

(12) Spectroscopic data: MS(EI): P+ m/e) 348,12C15
1H20

11B4
52Cr2; distribu-

tion of isotopes consistent with 4B and 2Cr; calculated exact mass
348.0765 (average of11B52Cr and 10B53Cr isotopomers), observed
348.0785.11B NMR (δ; THF, 20°C): 111.1 d,JBH ) 137 Hz,{1H} s;
69.0 d,JBH ) 145 Hz,{1H} s. 1H NMR (δ; C6D6, 20 °C): 5.17 s, 10H,
C5H5; 2.76 t,JHH ) 6.7 Hz, 4H, CH2CH2CH2; 1.98 quint,JHH ) 6.7 Hz,
2H, CH2CH2CH2.

(13) Crystal data for{η5-C5H5Cr}2{µ-η6:η6-(µ-1,2-C3H6-1,2-C2B4H4)}, 2:
C15H20B4Cr2, monoclinicP21/c (No. 14),a ) 11.820(3) Å,b ) 9.836-
(2) Å, c) 14.471(4) Å,â ) 109.46(2)°, V) 1586.4(7) Å3, Z) 4,Dcalc

) 1.455 g cm-3, 293 K. Data were collected on a crystal of dimensions
0.30 × 0.08 × 0.08 mm in theω/2θ scan mode on a CAD4
diffractometer to a maximum 2θ of 50.0°. Structure solution and
refinement were by SHELXTL. All non-hydrogens were refined aniso-
tropically, and the hydrogen atoms were refined isotropically with
selected restraints. Using all reflections (including negative intensities),
the refinement converged toR1 ) 0.0779, wR2 ) 0.1220 (R1 ) 0.0464,
wR2 ) 0.0984 if calculated only for reflections withI > 2σ(I)).
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Figure 1. Molecular structure of{η5-C5H5Cr}2{µ-η6:η6-(µ-1,2-C3H6-
1,2-C2B4H4)}, 2. Selected distances (Å): Cr(1)-Cr(2), 2.6626(11); Cr-
(1)-C(1,2), 2.075(4), 2.062(5); Cr(1)-B(1,2,3,4), 2.137(5), 2.108(5),
2.087(5), 2.115(6); Cr(2)-C(1,2), 2.085(4), 2.067(5); Cr(2)-B(1,2,3,4),
2.131(5), 2.089(5), 2.100(6), 2.120(5); C(1)-C(2), 1.464(6); C(1)-B(1),
1.561(6); C(2)-B(4), 1.553(7); B(1)-B(2), 1.713(7); B(2)-B(3), 1.734-
(8); B(3)-B(4), 1.706(8) Å.
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normally associated with eight-vertex closed clusters.16 Further,
the available cluster bonding electrons are insufficient to meet
the requirements of a single eight-vertex closo cage. Thus,2 is
better described as a 24-valence-electron (ve) triple-decker
complex,{η5-C5H5Cr}2{µ-η6:η6-(µ-1,2-C3H6-1,2-C2B4H4)}. This
electron count lies considerably below the 30/34-ve rule proposed
by Hoffmann et al.17 and matches that observed for{η5-C5H5-
Ti}2{µ-η3:η3-P6} with a puckered central ring.18,19

The observed structure is consistent with the description of2
as a triple-decker complex. The atoms of the C2B4 ring plus C(3)
and C(5) lie in a well-defined plane (rms deviation 0.010 Å).
The two Cr atoms are nearly equidistant from the six atoms of
the C2B4 ring. The C-C, B-C, and B-B distances within the
central ring are comparable to the same parameters in3, and the
C-C distance is close to the average found in the central C6 ring
of {η5-C5H5V}2{µ-η6:η6-C6H6} of 1.443(5) Å.20 The C5 rings
are modestly tilted relative to the C2B4 ring.
A comparison with triple-decker complexes that contain a

central P6 moiety is instructive. In the 28-ve{η5-C5Me5Mo}2-
{µ-η6:η6-P6}, a planar and symmetric 6π P6 species is found
“trapped” by two CpMo fragments.21 However, for CpMP6MCp
complexes with 26- and 24-ve, variations in the geometries of
the central P6 have been correlated with the orbital interactions
of the metals with the ring.19,22 That is, in contrast to the 28-ve
complex, both known 26-ve complexes (M) V, Nb) have in-
plane distortions of the central ring and the 24-ve complex (M)
Ti) has a puckered ring. This behavior has been traced to two
MO’s: a metal-ring antibonding orbital (e2′ symmetry, 4d* in
Figure 3, ref 22) and a metal-metal bonding orbital (a1′ and the
SHOMO in Figure 3, ref 22). The former is fully occupied, and
the HOMO for 28-ve is but half-occupied for 26-ve leading to
in-plane distortions that remove the degeneracy. It is empty for
24-ve and although a planar ring is not ruled out, puckering of
the ring permits an increase in the HOMO-LUMO gap.
Fenske-Hall calculations23,24 for 2 generate a similar MO

diagram in which the HOMO is a Cr-Cr bonding orbital and
the LUMO is a nearly degenerate pair of orbitals corresponding
to the ring-metal antibonding orbitals described above. The

difference in2 compared to CpTiP6TiCp arises from the lower
energies of the Cr d functions relative to Ti and the higher energies
of the C2B4 ring orbitals relative to P6. This yields a substantial
HOMO-LUMO gap without the necessity of ring distortion. In
addition, as the empty metal-ring antibonding MO’s (4d* in
Figure 3, ref 22) are largely metal based and derived from two
occupied metal fragment orbitals, electrons are transferred away
from the two Cr centers in forming2. Simultaneously, a pair of
C2B4-based, occupied MO’s of2 are derived mainly from the
empty, nearly degenerate set of out-of-planeπ-bonding orbitals
of the C2B4 ring and electrons are transferred to the ring on
forming 2. These two orbital interactions suggest that2 can be
viewed as a 6π [C2B4H4R2]4- ring bridging a [CpCrIII-CrIIICp]4+

ion.
For this reason we have explored a planar structure of

[C2B4H6]2n-, n ) 0-2, with ab initio techniques.25 Neither
C2B4H6 nor [C2B4H6]2- was found to have a stable planar form
(three out-of-plane and two in-plane imaginary frequencies,
respectively), but planar [C2B4H6]4- is a true minimum on the
potential energy surface.26 The calculated bond distances (C-C
) 1.464, C-B ) 1.548, and B-B ) 1.716 and 1.706 Å) are
equal within experimental error to those of2. As the distortions
observed for P6 triple-deckers are clearly related to changes in
ring orbital populations on coordination, the excellent cor-
respondence between the parameters in the free ligand structure
and related parameters in2 gives added validity to the model
suggested.
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